Explorable.com94.5K reads

An independent one-sample t-test is used to test whether the average of a sample differ significantly from a population mean, a specified value μ0.

Discover 34 more articles on this topic

Don't miss these related articles:

- 1Statistical Hypothesis Testing
- 2Relationships
- 3Correlation
- 4Regression
- 5Student’s T-Test
- 6ANOVA
- 7Nonparametric Statistics
- 8Other Ways to Analyse Data

When you compare each sample to a "known truth", you would use the (independent) one-sample t-test. If you are comparing two samples not strictly related to each other, the independent two-sample t-test is used.

Any single sample statistical test that uses t-distribution can be called a 'one-sample t-test'. This test is used when we have a random sample and we want to test if it is significantly different from a population mean.

Generally speaking, this test involves testing the null hypothesis H0: μ = μ0 against the alternative hypothesis, H1: μ ≠ μ0 where μ is the population mean and μ0 is a specific value of the population mean that we would like to test for acceptance.

An example may clarify the calculation and hypothesis testing of the independent one-sample t-test better.

Suppose that the teacher of a school claims that an average student of his school studies 8 hours per day during weekends and we desire to test the truth of this claim.

The statistical methodology for this purpose requires that we begin by first specifying the hypothesis to be tested.

In this case, the null hypothesis would be H0: μ = 8, which essentially states that mean hours of study per day is no different from 8 hours. And the alternative hypothesis is, H1: μ ≠ 8, which is negation of the teacher's claim.

In the next step, we take a sample of say 10 students of the school and collect data on how long they study during weekends.

These 10 different study hours is our data.

Suppose that the sample mean turns out to be 6.5 hours.

We cannot infer anything directly from this mean - as to whether the claim is to be accepted or rejected as it could very well have happened that by sheer luck (even though the sample was drawn randomly). Students included in the sample may have been those who studied fewer than 8 hours.

On the other hand, it could also be the case that the claim was indeed inappropriate.

To draw a scientifically valid conclusion, we can perform an independent one-sample t-test which helps us to either accept or reject the null hypothesis.

If the null hypothesis is rejected, it means that the sample came from a population with mean study hours significantly different from 8 hours.

On the other hand if the null hypothesis is accepted, it means that there is no evidence to suggest that average study hours were significantly different from 8 hours - thereby establishing evidence of the claim.

This test is one of the most popular small sample test widely used in all disciplines - medicine, behavioral science, physical science etc. However, this test can be used only if the background assumptions are satisfied.

- The population from which the sample has been drawn should be normal - appropriate statistical methods exist for testing this assumption (For example the Kolmogorov Smirnov non parametric test). It has however been shown that minor departures from normality do not affect this test - this is indeed an advantage.
- The population standard deviation is not known.
- Sample observations should be random.

This test is a small sample test. It is difficult to draw the clearest line of demarcation between large and small samples. Statisticians have generally agreed that a sample may be considered small if its size is < 30 (less than 30).

The test used for dealing with problems relating the large samples are different from the one used for small samples. We often use z-test for large samples.

Full reference:

Explorable.com (Jan 18, 2009). Independent One-Sample T-Test. Retrieved Sep 24, 2021 from Staging - Explorable.com: https://staging.explorable.com/independent-one-sample-t-test

The text in this article is licensed under the Creative Commons-License Attribution 4.0 International (CC BY 4.0).

This means you're free to copy, share and adapt any parts (or all) of the text in the article, as long as you give ** appropriate credit** and

That is it. You don't need our permission to copy the article; just include a link/reference back to this page. You can use it freely (with some kind of link), and we're also okay with people reprinting in publications like books, blogs, newsletters, course-material, papers, wikipedia and presentations (with clear attribution).

Discover 34 more articles on this topic

Don't miss these related articles:

- 1Statistical Hypothesis Testing
- 2Relationships
- 3Correlation
- 4Regression
- 5Student’s T-Test
- 6ANOVA
- 7Nonparametric Statistics
- 8Other Ways to Analyse Data

Thank you to...

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 827736.

Subscribe / Share

- Subscribe to our RSS Feed
- Like us on Facebook
- Follow us on Twitter
- Founder:
- Oskar Blakstad Blog
- Oskar Blakstad on Twitter

Explorable.com - 2008-2021

You are free to copy, share and adapt any text in the article, as long as you give *appropriate credit* and *provide a link/reference* to this page.